Manifolds admitting continuous field of frames
نویسندگان
چکیده
منابع مشابه
Construction of continuous $g$-frames and continuous fusion frames
A generalization of the known results in fusion frames and $g$-frames theory to continuous fusion frames which defined by M. H. Faroughi and R. Ahmadi, is presented in this study. Continuous resolution of the identity (CRI) is introduced, a new family of CRI is constructed, and a number of reconstruction formulas are obtained. Also, new results are given on the duality of continuous fusion fram...
متن کاملManifolds admitting stable forms
Special geometries defined by a class of differential forms on manifolds are again in the center of interests of geometers. These interests are motivated by the fact that such a setting of special geometries unifies many known geometries as symplectic geometry and geometries with special holonomy [Joyce2000], as well as other geometries arised in the M-theory [GMPW2004], [Tsimpis2005]. A series...
متن کاملContinuous frames and g-frames
In this note, we aim to show that several known generalizations of frames are equivalent to the continuous frame defined by Ali et al. in 1993. Indeed, it is shown that these generalizations can be considered as an operator between two Hilbert spaces.
متن کاملA Hilbert C-module Admitting No Frames
We show that every infinite-dimensional commutative unital C∗-algebra has a Hilbert C∗-module admitting no frames. In particular, this shows that Kasparov’s stabilization theorem for countably generated Hilbert C∗-modules can not be extended to arbitrary Hilbert C∗-modules.
متن کاملFractal Dimension of Graphs of Typical Continuous Functions on Manifolds
If M is a compact Riemannian manifold then we show that for typical continuous function defined on M, the upper box dimension of graph(f) is as big as possible and the lower box dimension of graph(f) is as small as possible.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tohoku Mathematical Journal
سال: 1964
ISSN: 0040-8735
DOI: 10.2748/tmj/1178243644